Complex Copper(II) Fluorides

III. Crystal Structure of $\mathrm{Ba}_{2} \mathrm{CuV}_{2} \mathrm{~F}_{12}$: A New Bidimensional $M X_{4}$ Network ${ }^{1}$

J. RENAUDIN, Y. LALIGANT, M. SAMOUËL,* A. DE KOZAK,* AND G. FEREY
Laboratoire des Fluorures et Oxyfluorures Ioniques, UA CNRS 449, Faculté
des Sciences, Route de Laval, 72017 Le Mans Cédex, France, and
*Laboratoire de Chimie Minérale, ER 9 CNRS, Université P. et M. Curie, Tour 54, 4 Place Jussieu, 75230 Paris Cédex 05, France

Received May 22, 1985; in revised form August 5, 1985

Abstract

$\mathrm{Ba}_{2} \mathrm{CuV}_{2} \mathrm{~F}_{12}$ is triclinic (S.G.: PĪ): $a=5.365(1) \AA, b=6.950(1) \AA, c=7.433(1) \AA, \alpha=65.05(1)^{\circ}, \beta=$ $70.26(2)^{\circ}, \gamma=73.19(2)^{\circ}, Z=1$. The structure is refined from 1623 independent reflections using the SHELX program to $R=0.0327$ ($R_{\mathrm{w}}=0.0331$). The network is built from layers of edge-sharing bioctahedral units $\left[\mathrm{CuVF}_{10}\right]$ linked by single VF_{6} octahedra. Cu and V are randomly distributed within the bioctahedral units. The Ba^{2+} ions are inserted between these layers and adopt a 12 -fold coordination. © 1986 Academic Press, Inc.

Introduction

We recently described the crystal structure of $\mathrm{BaCuFeF}_{7}$ (2) which is one of the very rare $3 d$ transition metals fluorides whose structure is built from edge-sharing octahedra. The other compounds which exhibit this peculiarity are $\mathrm{Ba}_{6} \mathrm{Zn}_{7} \mathrm{~F}_{26}$ (3), $\mathrm{Ba}_{2} \mathrm{Ni}_{3} \mathrm{~F}_{10}$ (4), $\mathrm{BaMnFeF}_{7}$ (5), H.T. BaZnFe F_{7} (6), and $A M^{1{ }^{11}} M^{\mathrm{II}} \mathrm{F}_{6}$ with $A=\mathrm{Li}, \mathrm{Na}$, $\mathrm{NH}_{4}^{+} ; M=3 d$ metal (7-9). Some of these compounds are interesting from a magnetic point of view since they allow one to understand the mechanism of superexchange which arises when the $M-F-M$ angles are close to 90°. Among all the possibilities of 90° magnetic coupling between M^{2+} and M^{3+} ions, the couple $d^{2}-d^{9}\left(\mathrm{~V}^{3+}-\mathrm{Cu}^{2+}\right)$ is particularly interesting and we tried to syn-

[^0]thetize BaCuVF_{7}. Despite several trials under various conditions, we could not isolate such a composition. The systematic study of the ternary diagram $\mathrm{BaF}_{2}-\mathrm{CuF}_{2}-\mathrm{VF}_{3}$ (10) shows the absence of BaCuVF_{7} but indicates the existence of $\mathrm{Ba}_{2} \mathrm{CuV}_{2} \mathrm{~F}_{12}$. We report here its crystal structure which corresponds to a new structural type built from a $M X_{4}$ skeleton. We also synthetized the isostructural compounds $\mathrm{Ba}_{2} \mathrm{CuAl}_{2} \mathrm{~F}_{12}(a=$ $5.137(2) \AA, b=6.817(2) \AA, c=7.363(3) \AA$, $\left.\alpha=64.64(3)^{\circ}, \beta=70.84(3)^{\circ}, \gamma=72.89(3)^{\circ}\right)$ and $\mathrm{Ba}_{2} \mathrm{CuGa}_{2} \mathrm{~F}_{12}(a=5.285(2) \AA, b=$ $6.867(2) \AA, c=7.393(2) \AA, \alpha=64.79(2)^{\circ}, \beta$ $\left.=70.51(2)^{\circ}, \gamma=73.23(2)^{\circ}\right)$.

Experimental

Pale green shapeless crystals of Ba_{2} $\mathrm{CuV}_{2} \mathrm{~F}_{12}$ were obtained in platinum tubes sealed under argon from a mixture $2 \mathrm{CuF}_{2}$ 158

Fig. 1. Pseudobinary phase diagram $\mathrm{BaVF}_{5}-\mathrm{CuF}_{2}$.
$1 \mathrm{BaF}_{2}-1 \mathrm{VF}_{3}$ melted at $655^{\circ} \mathrm{C}$ and cooled at $120^{\circ} \mathrm{C} / \mathrm{hr}$. This starting mixture was chosen after considering the pseudobinary phase diagram which appear in Fig. 1. Laue and precession photographs show that the symmetry is triclinic. The intensity data were collected on a CAD4 Nonius diffractometer. The experimental conditions and crystallographic characteristics are summarized in Table I.

Corrections for Lorentz and polarization effects were applied using the SHELX program (11) without any correction for absorption, owing to the small dimensions of the crystal. Atomic scattering factors were taken from the "International Tables for XRay Crystallography" (12) for $\mathrm{Ba}^{2+}, \mathrm{Cu}^{2+}$, V^{3+}, and F^{-}ions. Anomal dispersion corrections were applied.

Structure Determination

The structure was solved from a Patterson map calculated in the $P 1$ space group according to Abrahams' method (13). Two barium ions were located and their atomic coordinates were refined to a reliability factor: $R=0.55$. A Fourier map then revealed the positions of the $3 d$ cations which
showed a symmetry center. After applying the corresponding translation, the coordinates of the cations were refined to $R=$ 0.41 in the $P \overline{1}$ group. At this stage of the refinement, it was impossible to identify the chemical nature of the two different metallic sites ($1 h$) and ($2 i$). The F^{-}ions were then located from a new Fourier synthesis. The refinement of all the atomic parameters and isotropic temperature factors easily converged to $R=0.085$ ($R_{\mathrm{w}}=0.094$). The residual falls to $R=0.0327\left(R_{\mathrm{w}}=0.0331\right)$ by applying anisotropic thermal motion and a secondary extinction factor of 2.04×10^{-7} if V^{3+} is placed in $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$. The location of Cu^{2+} at these coordinates leads to $R=0.060$ (R_{w} $=0.069$). This implies that the general position ($2 i$) for $3 d$ metallic ions is occupied by $1 \mathrm{Cu}^{2+}+1 \mathrm{~V}^{3+}$. A strict cationic order in the

TABLE I
Experimental Data for a $\mathrm{Ba}_{2} \mathrm{CuV}_{2} \mathrm{~F}_{12}$ Crystal
Symmetry: triclinic ($P \overline{1} \overline{1})$
Cell parameters:

$$
\begin{aligned}
& a=5.365(1) \AA ; b=6.950(1) \hat{\AA} ; c=7.433(1) \AA ; \\
& \alpha=65.05(1)^{\circ} ; \beta=70.26(2)^{\circ} ; \gamma=73.19(2)^{\circ} \\
& V=233.02 \AA^{3}-Z=1-M=668.1 \mathrm{~g} \mathrm{~mole}^{-1} \\
& D_{\text {exp }}=4.65(7) \mathrm{g} \mathrm{~cm}^{-3}-D_{\text {calc }}=4.76 \mathrm{~g} \mathrm{~cm}^{-3}
\end{aligned}
$$

Crystal dimensions: shapeless (mean length: 0.045 mm)

Operating features:
Radiation: Mo ($\lambda=0.71069$)
Monochromator: graphite
Scan mode: $\omega \quad$ Sweep: $0.9+0.4 \operatorname{tg}(2 \theta)^{\circ}$
Scanning speed: $(20.1166 / \mathrm{NV})^{\circ} \mathrm{mn}^{-1}$ with NV integer
Linear absorption coefficient: $126 \mathrm{~cm}^{-1}\left(\mathrm{MoK}_{\alpha}\right)$
Range measured: $1.5^{\circ}<\theta<35^{\circ}$

$$
-8 \leq h \leq 8 ;-11 \leq k \leq 11 ; 0 \leq l \leq 12
$$

Number of reflections:

$$
\begin{aligned}
\text { total } & =1726 \\
\text { independent } & =1623
\end{aligned}
$$

Number of refined parameters: 80
Secondary extinction: $2.04(8) \times 10^{-7}$
Residual peak height in the final difference F map:

$$
\begin{aligned}
\max & =4.1 \mathrm{e} \cdot \AA^{-3} \\
\min & =-2.8 \mathrm{e}^{-} \cdot \AA^{-3}
\end{aligned}
$$

TABLE II
Atomic Coordinates and Anisotropic Thermal Parameters ${ }^{a}$

Atom	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}	$B_{\text {ef }}$ $\left(\AA^{2}\right)$
Ba	$0.7075(1)$	$0.7968(1)$	$0.7641(1)$	$170(1)$	$141(1)$	$164(1)$	$-87(1)$	$-20(1)$	$-24(1)$	0.98
V	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$96(3)$	$84(3)$	$113(3)$	$-46(3)$	$-28(3)$	$-6(2)$	0.61
Cu/V	$0.0522(1)$	$0.7753(1)$	$0.1679(1)$	$116(2)$	$89(2)$	$101(2)$	$-43(2)$	$-27(2)$	$3(2)$	0.67
F 1	$0.1730(6)$	$0.6542(4)$	$0.9626(4)$	$289(14)$	$197(11)$	$170(11)$	$-109(10)$	$-52(10)$	$-39(10)$	1.33
F 2	$0.4649(5)$	$0.7813(4)$	$0.4946(4)$	$222(12)$	$91(9)$	$213(12)$	$-63(9)$	$-88(10)$	$2(8)$	1.09
F 3	$0.1236(5)$	$0.4870(4)$	$0.6513(4)$	$147(10)$	$175(11)$	$183(12)$	$-61(9)$	$-29(9)$	$-13(9)$	1.12
F 4	$0.0224(5)$	$0.0950(4)$	$0.6419(4)$	$199(11)$	$172(10)$	$121(10)$	$-81(8)$	$1(8)$	$-46(9)$	1.05
F 5	$0.2517(6)$	$0.0363(5)$	$0.9542(5)$	$162(11)$	$404(17)$	$248(14)$	$-200(13)$	$-79(10)$	$38(10)$	1.61
F 6	$0.6039(5)$	$0.3894(5)$	$0.7616(4)$	$159(10)$	$202(11)$	$134(10)$	$-69(9)$	$-45(8)$	$47(9)$	1.14

${ }^{a}$ The vibrational coefficients are relative to the expression: $T=\exp \left(-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+1^{2} c^{* 2} U_{33}+\right.\right.$ $\left.2 k l b^{*} c^{*} U_{23}+2 h l a^{*} c^{*} U_{13}+2 h k a^{*} b^{*} U_{12}\right)$) with standard deviations in parentheses and $U_{i j}$ values $\times 10^{4}$.
structure would require a splitting of the (2i) position in two distinct sites, i.e., the use of the noncentric space group: $P 1$. Several attempts to refine the structure in this

TABLE III
Interatomic Distances (\AA) and Bond Angles $\left({ }^{\circ}\right)$ IN $\mathrm{Ba}_{2} \mathrm{CuV}_{2} \mathrm{~F}_{12}$

Barium polyhedron		
Ba-F 4: 2.716(3)	Ba-F 4: 2.745(3)	
Ba-F 2: 2.783(3)	Ba-F 3: 2.793(3)	
Ba-F 2: 2.833(3)	Ba-F 5: 2.836(4)	
Ba-F 5: 2.878(4)	Ba-F 1: 2.951(3)	
Ba-F 1: 2.989(3)	Ba-F 1: 3.037(3)	
Ba-F 6: 3.048(3)	Ba-F 6: 3.212(3)	
(Ba-F) 2.90 (14)		
Single V octahedron		Angle at V
$\mathrm{V}-\mathrm{F}_{\mathrm{t}} \mathrm{L}: 2 \times 1.894(2)$	F2-F6: 2×2.679 (3)	87.6(1)
$\mathrm{V}-\mathrm{F3}_{\mathrm{b}}: 2 \times 1.959(3)$	F2-F3: $2 \times 2.690(3)$	88.5(1)
V-F6 $\mathrm{b}_{6}: 2 \times 1.976(3)$	F2-F3: $2 \times 2.759(4)$	91.4(1)
	F3-F6: 2×2.779 (4)	89.8(1)
(V-F) 1.943(35)	F3-F6: $2 \times 2.787(4)$	$90.1(1)$
	F2-F6: 2×2.794 (3)	92.4(1)
Bioctahedral CuV unit		Angle at M
M-F4 ${ }_{1}$: 1.859(3)	F1-F6: 2.579(4)	83.7(1)
M- $\mathrm{Fl}_{4}: 1.886$ (3)	F1-F3: 2.678(4)	86.4(1)
M-F66: 1.978(3)	F5-F5: 2.696(6)	81.9(2)
M-F5 ${ }_{\mathrm{b}}: 1.990(4)$	F4-F5: 2.737(7)	93.8(3)
M-F3 ${ }_{\mathrm{b}}$: 2.022(3)	F1-F5: 2.745 (4)	87.6(2)
$M-\mathrm{F}_{\mathrm{b}}: 2.122(4)$	F4-F6: 2.747(4)	91.4(1)
	F1-F5: 2.779(5)	90.1 (2)
(M-F) 1.976(87)	F4-F5: 2.812(6)	86.6(2)
	F3-F6: 2.826(5)	89.9(1)
F1-M-F4: 172.4(3) ${ }^{\text {o }}$	F5-F6: 2.885(9)	89.3(2)
F3-M-F5: $174.0(5)^{\circ}$	F3-F4: $2.960(8)$	99.3(2)
FS-M-F6: $169.5(5)^{\text {a }}$	F3-F5: 3.034(9)	98.3(3)
M-F5-M: 98.1(3) ${ }^{\circ}$		
Intermetallic distances		
V-M: 3.590(1)		
M-M: 3.107(1)		

group lead to slightly better reliability factors ($R=0.029, R_{\mathrm{w}}=0.030$) which are the same for the two cationic distributions (Cu : positive coordinates and V: negative coordinates or vice versa); however, in each case, some thermal ellipsoids are nonpositive definite. Therefore the crystal structure will be described in the $P \overline{1}$ centrosymmetric space group. It is noteworthy that the residual peaks in the final Fourier difference map are all close to the barium ions and are negligible around Cu and V positions. Table II presents the final results for the nine independent positions and the interatomic distances are listed in Table III. The indexed X-ray powder spectrum is reported in Table IV. The list of structure factors may be obtained on request to one of the authors (G.F.).

Discussion of the Structure

$\mathrm{Ba}_{2} \mathrm{CuV}_{2} \mathrm{~F}_{12}$ adopts an original layered structure. The layers lying in the (101) planes, can be described by a new arrangement of octahedra in the crystal chemistry of fluorides: edge-sharing bioctahedral CuVF_{10} units appear inside which Cu^{2+} and V^{3+} ions are randomly distributed (Fig. 2). VF_{6} single octahedra share their equatorial

Fig. 2. Perspective view of the structure of $\mathrm{Ba}_{2} \mathrm{CuV}_{2} \mathrm{~F}_{12}$ showing one $M X_{4}$ layer. The numbers indicate the type of fluorine (see Table II).
fluorine with four bioctahedra and form a plane with the composition $M_{3} \mathrm{~F}_{12}$ (or $M \mathrm{~F}_{4}$); this geometry was hitherto unknown for such a composition in fluorides of low dimensionality. The previously described octahedral networks were either built from perovskite-like planes like in $\mathrm{K}_{2} \mathrm{NiF}_{4}$ (14) or AFeF_{4} with $A=\mathrm{K}$ (15), Rb (16), Cs (17), $\mathrm{NH}_{4}(18)$; corrugated planes of corner-sharing octahedra as in NaFeF_{4} (19) and NaCrF_{4} (20) or in $\mathrm{Ba} M \mathrm{~F}_{4}$ with $M=\mathrm{Mn}$ (21), Cu (22); tetragonal bronze layers like in β - RbAlF_{4} (23); or columns of triangular cycles of octahedra like in KCrF_{4} (24) and CsMF_{4} with $M=\mathrm{Cr}(25), \mathrm{Al}(26,27)$.

Fig. 3. A layer of the ReO_{3} structure before (a) and after (b) the crystallographic shear which describes the structure of $\mathrm{Ba}_{2} \mathrm{CuV}_{2} \mathrm{~F}_{\mathrm{t} 2}$.

This new geometry is intermediate between that of perovskite-like planes and of planes built exclusively from bioctahedral units like in H.T. $\mathrm{BaZnFeF}_{7}$ (6) or BaCu FeF_{7} (2). Therefore it can be ideally described as resulting from a periodic $\frac{1}{2} \vec{n}_{[110]}$ crystallographic shear along ($\overline{1} 10$) planes of the ReO_{3} structure (Fig. 3). The layers are stacked as indicated in the Fig. 4. This implies that each octahedron has four bridging

Fig. 4. Stacking of three consecutive $M X_{4}$ layers in $\mathrm{Ba}_{2} \mathrm{CuV}_{2} \mathrm{~F}_{12}$; barium ions inserted between the planes are not indicated.

TABLE IV
Indexation of the X-Ray Powder Pattern $\left(\mathrm{Cu} K_{\alpha}\right)$

hkl	θ	$D_{\text {calc }}$	$D_{\text {outs }}$	$I_{\text {calc }}$
$\begin{array}{llll}0 & 0 & 1\end{array}$	6.77	6.5366	${ }^{\circ}$	1
0 1 0	7.13	6.2076	\square	2
$0 \begin{array}{lll}0 & 1 & 1\end{array}$	7.87	5.6234	5.625	2
111	9.47	4.6825	a	3
$1 \begin{array}{lll}1 & 1\end{array}$	9.77	4.5396	4.545	28
110	10.43	4.2553	4.255	12
0 1-1	11.51	3.8608	3.860	28
1-1 0	12.38	3.5922	3.590	36
1 0-1	12.51	3.5555	3.551	100
112	12.81	3.4753 \}		81
0112	12.91	3.4482)	3.460	2
$0 \quad 21$	13.49	3.3015	3.300	26
0 0 0	13.63	3.2683	3.267	27
121	13.70	3.2514	3.251	41
1-1-1	13.99	3.1869	3.183	15
1-1 1	14.34	3.1107)		42
102	14.34	$3.1091\}$	3.108	7
020	14.37	3.1038)		27
1 1-1	14.92	2.9927	2.990	6
122	15.08	2.9611	2.963	11
120	15.60	2.8636	2.864	22
022	15.90	2.8117	2.812	29
211	16.78	2.6687	2.666	49
0 1-2	17.66	2.5397	2.536	3
200	18.04	2.4873	a	1
210	18.25	2.4594		2
1-1-2	18.30	$2.4527\}$	2.455	6
1-2 0	18.32	2.4508)		7
1-2-1	18.50	2.4274	2.428	5
1-1 2	18.85	2.3837	2.382	17
221	18.98	2.3685		1
123	19.09	2.3549	${ }^{\circ}$	2
222	19.21	2.3413 \}	2.340	23
$\begin{array}{lll}0 & 1 & 3\end{array}$	19.26	2.3351		11
202	19.84	2.2698	a	3
1 2-1	19.94	$2.2582\}$		54
132	20.00	2.2518	2.253	3
$\begin{array}{lll}0 & 3 & 1\end{array}$	20.35	2.2153	a	14
103	20.42	2.2077	2.206	30
$\begin{array}{lll}0 & 2 & 3\end{array}$	20.57	2.1924	2.192	36
2-1 0	20.66	2.1829		13
1-2 1	20.67	$2.1818\}$	2.180	3
$\begin{array}{llll}0 & 0 & 3\end{array}$	20.70	2.1789		4
1 1-2	20.92	2.1572		5
$20-1$	20.96	2.1535	2.155	15
$1-2-2$	21.17	2.1332)		5
2-1 1	21.20	2.1300		32
$0 \begin{array}{lll}0 & 3\end{array}$	21.22	2.1282	2.130	2
220	21.23	2.1276		7
$2 \begin{array}{lll}2 & 1\end{array}$	21.73	2.0805	2.080	9
030	21.86	2.0692	2.069	13
2 1-1	22.03	2.0539	2.052	6
130	22.20	2.0388	2.038	3
133	22.45	2.0173 \}		9
2-1-1	22.47	2.0157	2.016	9
232	22.86	1.9824	a	4

[^1]

Fig. 5. (010) projection showing the hexagonal close packing of fluorine atoms around barium ions.
$\left(F_{b}\right)$ and two terminal (F_{t}) fluorine atoms. As previously noticed (28), $M-\mathrm{F}_{\mathrm{t}}$ distances are smaller than $M-\mathrm{F}_{\mathrm{b}}$ ones (Table III). In the VF_{6} octahedron, the mean distance is close to the sum of the ionic radii (29). The random distribution of Cu and V inside the bioctahedral units prevents from drawing any conclusion about distances.

Barium ions are inserted between the layers. They are 12 -coordinated, their coordination polyhedron being of the hexagonal close-packed type (Fig. 5). The average value of $\mathrm{Ba}-\mathrm{F}$ distances $(2.902 \AA$) is very close to the sum of the ionic radii of ${ }^{\mathrm{XII}} \mathrm{Ba}^{2+}$ $(1.61 \AA)$ and ${ }^{{ }^{I}} \mathrm{~F}^{-}(1.285 \AA)$. Using these values, the packing fraction is 0.608 . The antiferromagnetic behavior of this compound ($T_{\mathrm{N}} \approx 12 \mathrm{~K}$) is presently under investigation.

Acknowledgments

The authors are indebted to Dr. P. Chevallier and Pr. Rouxel (Université de Nantes) for providing them with all facilities in data collection. They are grateful to Dr. J. Pannetier (I.L.L. Grenoble) for computing facilities, to Dr. M. Leblanc for helpful discussions and to the referees for their pertinent remarks.

References

I. M. Samouêl, A. de Kozak, J. Renaudin, M. Leblanc, and G. Ferey, Rev. Chim. Min. 22, 64 (1985).
2. J. Renaudin, Y. Calage, M. Samouël, A. de Kozak, M. Leblanc, and G. Ferey, Rev. Chim. Min. 22, 74 (1985).
3. J. Renaudin, M. Samouël, M. Leblanc, A. de Kozak, and G. Ferey, J. Solid State Chem. 59, 103 (1985).
4. M. Lebi anc, G. Ffrey, and R. de Pape, I. Solid State Chem. 33, 317 (1980).
5. H. Holler, D. Babel, M. Samouël, and A. de Kozak, J. Solid State Chem. 39, 345 (1981).
6. H. Holler and D. Babel, Z. Anorg. Allgem. Chem. 491, 137 (1982).
7. G. Courbion, C. Jacoboni, and R. de Pape, J. Solid State Chem. 45, 127 (1982).
8. M. Leblanc, G. Ferey, Y. Calage, and R. de Pape, J. Solid State Chem. 47, 24 (1983).
9. N. N. Greenwood, A. T. Howe, and F. Menil, J. Chem. Soc. A 2218 (1971).
10. M. Samouël and A. de Kozak, Rev. Chim. Min., in press.
11. G. M. Sheldrick, "SHELX: A Program for Crystal Structure Determination," Cambridge (1976).
12. "International Tables for X-Ray Crystallography," Vol. IV, Birmingham (1974).
13. S. C. Abrahams, J. Chem. Phys. 46(6), 2052 (1967).
14. D. Balz and K. Pleith, Z. Electrochem. 59, 545 (1955).
15. G. Heger, R. Geller, and D. Babel, Solid State Commun. 9, 335 (1971).
16. A. Tressaud, J. Galy, and J. Portier, Bull. Soc. Fr. Minér. Cristall. 92, 335 (1969).
17. D. Babel, F. Wall, and G. Heger, Z. Naturforsch. B 29, 139 (1974).
18. M. Leblanc, G. Ferey, and R. de Pape, Acta Crystallogr. C 41, 657 (1985).
19. J. M. Dance, A. Tressaun, W. Massa, and D. Babel, J. Chem. Research S, 202 (1981).
20. G. Knoke, W. Verschaeren, and D. Babel, J. Chem. Research S 213, 2579 (1979).
21. E. T. Keve, S. C. Abrahams, and J. L. Bernstein, J. Chem. Phys. 51, 4928 (1969).
22. H. G. Von Schnering, B. Kolloch, and A. Kolodziejczyk, Angew. Chem. 12, 440 (1971).
23. J. L. Fourquet, F. Plet, and R. de Pape, Acta Crystallogr. B 36, 1997 (1980).
24. J. C. Dewan and A. J. Edwards, J. Chem. Soc. Chem. Commun. 15, 533 (1977).
25. D. Babel and G. Knoke, Z. Anorg. Allg. Chem. 442, 151 (1978).
26. R. Losch and C. H. Hebecker, Z. Naturforsch. B 34, 131 (1979).
27. J. L. Fourquet, F. Plet, G. Courbion, A. Bulou and R. de Pape, Rev. Chim. Min. 16, 490 (1979).
28. G. Ferey, M. Leblanc, A. de Kozak, M. Samouël, J. Pannetier, J. Solid State Chem. 56, 288 (1985).
29. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

[^0]: ${ }^{1}$ For parts I and II, see Refs. (1, 2).
 0022-4596/86 \$3.00
 Copyright © 1986 by Academic Press, Inc.
 All rights of reproduction in any form reserved.

[^1]: ${ }^{a}$ Unobserved reflections.

